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1. Prove that   = 
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2. Find the set of values of x for which 
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3.  Given that 
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 = i, where  is a positive, real constant, 

 

 (a) show that z = 
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 Given also that arg z = arctan 
2
1 , calculate 

 

 (b) the value of , 

(3) 

 (c) the value of z2
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4. (a) Find the general solution of the differential equation  
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(4) 

 (b) Given that x = 1 and 
t

x

d

d
 = 1 at t = 0, find the particular solution of the differential equation, 

giving your answer in the form x = f(t). 

(5) 

 (c) Sketch the curve with equation x = f(t), 0  t  , showing the coordinates, as multiples of , 

of the points where the curve cuts the t-axis. 

 (4) 
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5. The temperature   C of a room t hours after a heating system has been turned on is given by 

 

  = t + 26 – 20e
–0.5t

,   t
  0. 

 

 The heating system switches off when  = 20. The time t = , when the heating system switches 

off, is the solution of the equation  – 20 = 0, where  lies in the interval [1.8, 2]. 

 

 (a) Using the end points of the interval [1.8, 2], find, by linear interpolation, an approximation 

to . Give your answer to 2 decimal places. 

(4) 

 (b) Taking 1.9 as a first approximation to , use the Newton-Raphson procedure once to obtain a 

second approximation to . Give your answer to 3 decimal places. 

(6) 

 (c) Use your answer to part (b) to find, to the nearest minute, the time for which the heating 

system was on. 

(1) 

 

 

6. (a) Show that the substitution y = vx transforms the differential equation 
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  into the differential equation 
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(4) 

 (b) By solving differential equation (II), find a general solution of differential equation (I). 

(5) 

 (c) Given that y = 7 at x = 1, show that the particular solution of differential equation (I) can be 

written as 

(3y – x)( y + 3x) = 200. 

 (5) 
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7.        Figure 1 
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 A curve C has polar equation r
2
 = a

2
 cos 2, 0    

4


. The line l is parallel to the initial line, 

and l is the tangent to C at the point P, as shown in Figure 1. 

 

 (a) (i) Show that, for any point on C, r
2
 sin

2
  can be expressed in terms of sin  and a only. 

(1) 

  (ii) Hence, using differentiation, show that the polar coordinates of P are 
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(6) 

 

 The shaded region R, shown in Figure 1, is bounded by C, the line l and the half-line with 

equation  = 
2


. 

 

 (b) Show that the area of R is 
16

2
a

(33 – 4). 

 (8) 

 

TOTAL FOR PAPER: 75 MARKS 

END 

N20906A 4 


	Advanced/Advanced Subsidiary

